Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.

Identifieur interne : 003531 ( Main/Exploration ); précédent : 003530; suivant : 003532

Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.

Auteurs : Rajeev Kumar [États-Unis] ; Gaurav Mago ; Venkatesh Balan ; Charles E. Wyman

Source :

RBID : pubmed:19362819

Descripteurs français

English descriptors

Abstract

In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO(2) technologies. In addition to measuring the chemical compositions including acetyl content, physical attributes determined were biomass crystallinity, cellulose degree of polymerization, cellulase adsorption capacity of pretreated solids and enzymatically extracted lignin, copper number, FT-IR responses, scanning electron microscopy (SEM) visualizations, and surface atomic composition by electron spectroscopy of chemical analysis (ESCA). Lime pretreatment removed the most acetyl groups from both corn stover and poplar, while AFEX removed the least. Low pH pretreatments depolymerized cellulose and enhanced biomass crystallinity much more than higher pH approaches. Lime pretreated corn stover solids and flowthrough pretreated poplar solids had the highest cellulase adsorption capacity, while dilute acid pretreated corn stover solids and controlled pH pretreated poplar solids had the least. Furthermore, enzymatically extracted AFEX lignin preparations for both corn stover and poplar had the lowest cellulase adsorption capacity. ESCA results showed that SO(2) pretreated solids had the highest surface O/C ratio for poplar, but for corn stover, the highest value was observed for dilute acid pretreatment with a Parr reactor. Although dependent on pretreatment and substrate, FT-IR data showed that along with changes in cross linking and chemical changes, pretreatments may also decrystallize cellulose and change the ratio of crystalline cellulose polymorphs (Ialpha/Ibeta).

DOI: 10.1016/j.biortech.2009.01.075
PubMed: 19362819


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.</title>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thayer School of Engineering, Dartmouth College, New Hampshire 03755, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Thayer School of Engineering, Dartmouth College, New Hampshire 03755</wicri:regionArea>
<wicri:noRegion>New Hampshire 03755</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mago, Gaurav" sort="Mago, Gaurav" uniqKey="Mago G" first="Gaurav" last="Mago">Gaurav Mago</name>
</author>
<author>
<name sortKey="Balan, Venkatesh" sort="Balan, Venkatesh" uniqKey="Balan V" first="Venkatesh" last="Balan">Venkatesh Balan</name>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19362819</idno>
<idno type="pmid">19362819</idno>
<idno type="doi">10.1016/j.biortech.2009.01.075</idno>
<idno type="wicri:Area/Main/Corpus">003597</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003597</idno>
<idno type="wicri:Area/Main/Curation">003597</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003597</idno>
<idno type="wicri:Area/Main/Exploration">003597</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.</title>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thayer School of Engineering, Dartmouth College, New Hampshire 03755, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Thayer School of Engineering, Dartmouth College, New Hampshire 03755</wicri:regionArea>
<wicri:noRegion>New Hampshire 03755</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mago, Gaurav" sort="Mago, Gaurav" uniqKey="Mago G" first="Gaurav" last="Mago">Gaurav Mago</name>
</author>
<author>
<name sortKey="Balan, Venkatesh" sort="Balan, Venkatesh" uniqKey="Balan V" first="Venkatesh" last="Balan">Venkatesh Balan</name>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</author>
</analytic>
<series>
<title level="j">Bioresource technology</title>
<idno type="eISSN">1873-2976</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetic Acid (MeSH)</term>
<term>Adsorption (MeSH)</term>
<term>Bioelectric Energy Sources (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Carbon (analysis)</term>
<term>Cellulase (metabolism)</term>
<term>Cellulose (chemistry)</term>
<term>Copper (chemistry)</term>
<term>Crystallization (MeSH)</term>
<term>Enzymes (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Hydrophobic and Hydrophilic Interactions (MeSH)</term>
<term>Lignin (isolation & purification)</term>
<term>Microscopy, Electron, Scanning (MeSH)</term>
<term>Nitrogen (analysis)</term>
<term>Populus (chemistry)</term>
<term>Spectroscopy, Fourier Transform Infrared (MeSH)</term>
<term>Surface Properties (MeSH)</term>
<term>X-Ray Diffraction (MeSH)</term>
<term>Zea mays (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide acétique (MeSH)</term>
<term>Adsorption (MeSH)</term>
<term>Azote (analyse)</term>
<term>Biomasse (MeSH)</term>
<term>Carbone (analyse)</term>
<term>Cellulase (métabolisme)</term>
<term>Cellulose (composition chimique)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Cristallisation (MeSH)</term>
<term>Cuivre (composition chimique)</term>
<term>Diffraction des rayons X (MeSH)</term>
<term>Enzymes (MeSH)</term>
<term>Interactions hydrophobes et hydrophiles (MeSH)</term>
<term>Lignine (isolement et purification)</term>
<term>Microscopie électronique à balayage (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Propriétés de surface (MeSH)</term>
<term>Sources d'énergie bioélectrique (MeSH)</term>
<term>Spectroscopie infrarouge à transformée de Fourier (MeSH)</term>
<term>Zea mays (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carbon</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cellulose</term>
<term>Copper</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulase</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Acetic Acid</term>
<term>Enzymes</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Azote</term>
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cellulose</term>
<term>Cuivre</term>
<term>Populus</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adsorption</term>
<term>Bioelectric Energy Sources</term>
<term>Biomass</term>
<term>Crystallization</term>
<term>Hydrogen-Ion Concentration</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Microscopy, Electron, Scanning</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
<term>Surface Properties</term>
<term>X-Ray Diffraction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acide acétique</term>
<term>Adsorption</term>
<term>Biomasse</term>
<term>Concentration en ions d'hydrogène</term>
<term>Cristallisation</term>
<term>Diffraction des rayons X</term>
<term>Enzymes</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Microscopie électronique à balayage</term>
<term>Propriétés de surface</term>
<term>Sources d'énergie bioélectrique</term>
<term>Spectroscopie infrarouge à transformée de Fourier</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO(2) technologies. In addition to measuring the chemical compositions including acetyl content, physical attributes determined were biomass crystallinity, cellulose degree of polymerization, cellulase adsorption capacity of pretreated solids and enzymatically extracted lignin, copper number, FT-IR responses, scanning electron microscopy (SEM) visualizations, and surface atomic composition by electron spectroscopy of chemical analysis (ESCA). Lime pretreatment removed the most acetyl groups from both corn stover and poplar, while AFEX removed the least. Low pH pretreatments depolymerized cellulose and enhanced biomass crystallinity much more than higher pH approaches. Lime pretreated corn stover solids and flowthrough pretreated poplar solids had the highest cellulase adsorption capacity, while dilute acid pretreated corn stover solids and controlled pH pretreated poplar solids had the least. Furthermore, enzymatically extracted AFEX lignin preparations for both corn stover and poplar had the lowest cellulase adsorption capacity. ESCA results showed that SO(2) pretreated solids had the highest surface O/C ratio for poplar, but for corn stover, the highest value was observed for dilute acid pretreatment with a Parr reactor. Although dependent on pretreatment and substrate, FT-IR data showed that along with changes in cross linking and chemical changes, pretreatments may also decrystallize cellulose and change the ratio of crystalline cellulose polymorphs (Ialpha/Ibeta).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19362819</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-2976</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>100</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Bioresource technology</Title>
<ISOAbbreviation>Bioresour Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.</ArticleTitle>
<Pagination>
<MedlinePgn>3948-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.biortech.2009.01.075</ELocationID>
<Abstract>
<AbstractText>In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO(2) technologies. In addition to measuring the chemical compositions including acetyl content, physical attributes determined were biomass crystallinity, cellulose degree of polymerization, cellulase adsorption capacity of pretreated solids and enzymatically extracted lignin, copper number, FT-IR responses, scanning electron microscopy (SEM) visualizations, and surface atomic composition by electron spectroscopy of chemical analysis (ESCA). Lime pretreatment removed the most acetyl groups from both corn stover and poplar, while AFEX removed the least. Low pH pretreatments depolymerized cellulose and enhanced biomass crystallinity much more than higher pH approaches. Lime pretreated corn stover solids and flowthrough pretreated poplar solids had the highest cellulase adsorption capacity, while dilute acid pretreated corn stover solids and controlled pH pretreated poplar solids had the least. Furthermore, enzymatically extracted AFEX lignin preparations for both corn stover and poplar had the lowest cellulase adsorption capacity. ESCA results showed that SO(2) pretreated solids had the highest surface O/C ratio for poplar, but for corn stover, the highest value was observed for dilute acid pretreatment with a Parr reactor. Although dependent on pretreatment and substrate, FT-IR data showed that along with changes in cross linking and chemical changes, pretreatments may also decrystallize cellulose and change the ratio of crystalline cellulose polymorphs (Ialpha/Ibeta).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Rajeev</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Thayer School of Engineering, Dartmouth College, New Hampshire 03755, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mago</LastName>
<ForeName>Gaurav</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balan</LastName>
<ForeName>Venkatesh</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wyman</LastName>
<ForeName>Charles E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Bioresour Technol</MedlineTA>
<NlmUniqueID>9889523</NlmUniqueID>
<ISSNLinking>0960-8524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.4</RegistryNumber>
<NameOfSubstance UI="D002480">Cellulase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Q40Q9N063P</RegistryNumber>
<NameOfSubstance UI="D019342">Acetic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019342" MajorTopicYN="N">Acetic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000327" MajorTopicYN="N">Adsorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001674" MajorTopicYN="Y">Bioelectric Energy Sources</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002480" MajorTopicYN="N">Cellulase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014961" MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>01</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>01</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19362819</ArticleId>
<ArticleId IdType="pii">S0960-8524(09)00155-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.biortech.2009.01.075</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Balan, Venkatesh" sort="Balan, Venkatesh" uniqKey="Balan V" first="Venkatesh" last="Balan">Venkatesh Balan</name>
<name sortKey="Mago, Gaurav" sort="Mago, Gaurav" uniqKey="Mago G" first="Gaurav" last="Mago">Gaurav Mago</name>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003531 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003531 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19362819
   |texte=   Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19362819" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020